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We investigate the synchronization of two chaotic systems through continuous feedback control.
The dependence of the synchronization efficiency on the perturbation weight is studied, as well as

the influence of noise.
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Due to the sensitive dependence of chaotic dynamical
systems on the initial conditions, control of chaos may ap-
pear a remote possibility. Moreover, in practical applica-
tions, system imperfect identification and the ubiquitous
presence of internal and external noise seem to make the
task even more hopeless. Nonetheless, it has been estab-
lished that synchronization of chaotic systems is possi-
ble [1,2] and has practical potential applications [3]. Al-
though the dynamics of a chaotic system can be modi-
fied by time-dependent signals (nonfeedback control [4]),
it is generally accepted that feedback control [5,6] offers
more advantages. In their pioneering work Ott, Grebogi,
and York [5] showed that by applying small temporal-
parameter perturbations it is possible to stabilize unsta-
ble periodic orbits embedded in the chaotic attractor.
This method was later extended [7] to achieve synchro-
nization of a chaotic trajectory of one system about a
chaotic trajectory of another system. Though the appli-
cation of the Ott-Grebogi-York method requires a per-
manent analysis of the state of the system, the changes
of the parameter are discrete in time since the method
deals with the Poincaré map. It follows that the pres-
ence of noise may lead to occasional bursts of the system
into regions far from the desidered orbit. To overcome
such limitations Pyragas [6] suggested an alternative ap-
proach to chaos control based on stabilization of unsta-
ble periodic orbits through a small time continuous per-
turbation (either by combined feedback with the use of
an external oscillator or by delayed self-controlling feed-
back). The continuous control does not require any com-
puter analysis of the system and can be particularly con-
venient for experimental applications. Recently Kapita-
niak [8] suggested the possibility of applying this method
to achieve synchronization of two chaotic systems and re-
ported some preliminary results. Here we present a more
detailed study of synchronization through a continuous
chaos control. We analyze the dependence of the syn-
chronization efficiency on the perturbation strength and
investigate the influence of noise as well as that of the
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choice of the variable used to implement the method.
The continuous feedback control method can be sum-

marized as follows. We consider two identical chaotic

dynamic systems that can be simulated by the equations

&= f(z), ¥=r(y), (1)

with z,y € R™, called A and B, respectively. Let us
suppose that some state variable of both systems can be
measured, for example, z;(t) from system A and y;(t)
from system B (¢ = 1,...,n). To achieve synchronization,
we can use the differerence

F(t) = K[yi(t) — =:(t)] (2)

as a negative feedback introduced into one of the chaotic
systems (A in our case). Here K is a positive quantity
representing an experimentally adjustable weight of the
perturbation. The control signal (2) forces the solution of
system A over that of system B, so that synchronization
eventually follows. Since in this regime z;(t) = ¥;(t),
F(t) becomes zero and the two systems are practically
uncoupled, thus obeying the same dynamics as in the
absence of the perturbation.

We investigate the above outlined synchronization pro-
cedure choosing as a model system the Duffing oscillator

Z + az + x> = B cost. (3)

The parameters a and B were chosen so as to corre-
spond to a chaotic behavior (a = 0.1, B = 10). Con-
sequently, the trajectories of two such Duffing oscillators
with slightly different initial conditions diverge exponen-
tially from each other. Synchronization can be achieved
by coupling them through a feedback control F(t) to ob-
tain the system [8]

&+ ai + 22 = B cost + F(t), (4)
i+ ay +y® = B cost.

We exploited a numerical solution of system (4) us-
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ing the fourth-order Runge-Kutta method. Calculations
were carried out in double precision [9] with a time step
dt = 0.01 (test runs were also performed with a time
step of 0.001). The synchronization efficiency, for a
given perturbation, is investigated in terms of the syn-
chronization time t, defined as the time taken in order
that the distance d(¢) in the phase space between the or-
bits of the two coupled oscillators is of the order of the
precision of the computers used, i.e., d(t;) < €, where
d(t) = {[z(t) — y()]* + [(t) — 9(t)]*}*/? and e = 10714

Let us first take F(t) = K(y — ¢), which amounts to
choosing the oscillator position as the output variable.
Figure 1 shows the corresponding synchronization time
as a function of the perturbation weight. For each value
of K the results were averaged over N = 100 indepen-
dent runs with randomly chosen initial conditions. Two
sets of calculations were performed, with run lengths of
108 and 2x10° iterations, respectively. In the figure we
show also the fraction A = N,/N, where N, is the num-
ber of runs for which synchronization is attained, with
the required precision, within the maximum run length
(Tmax) allowed. When for a given K synchronization is
not attained for any of the runs performed, i.e., when
A = 0, it follows that t, is at least greater than Ty,
The smallest value of K for which A is different from

0.15 T

zero is K = 1.5 [10]. We observe that A is smaller than
one but tends to this value as the run length increases.
Thus synchronization can be achieved, though with a low
efficiency: the corresponding ¢, [11] is, in fact, quite large
(out of the scale adopted in the figure). Synchronization
is more efficiently attained for K > K, where K, ~ 2.5,
with the exception of a restricted interval around K = 4
(on this we will comment later). We note that, except
for K = 1.5, both the values of t, and those of )\ are
substantially stable for the two sets of calculations per-
formed.

To support the preceding conclusions we investigated
the stability of system (4) studying the dependence on K
of the spectrum of the Lyapunov exponents through the
method of Wolf et al. [12]. In order to ensure that the
estimate of the Lyapunov exponents (L) is independent
of the run length, for each value of K we performed two
runs of 10% and 107 iterations, respectively, obtaining es-
sentially identical results. We focus our attention on the
two L’s which at K = 0 are positive, their value coin-
ciding with that of the largest Lyapunov exponent of a
single Duffing oscillator in the chaotic regime considered
(see Fig. 2). As K increases, one of the two L’s remains
essentially unaltered, whereas the other one gradually de-
creases. This behavior signals that while subsystem B is
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FIG. 2. The two largest Lyapunov expo-
nents L of system (4), with F(t) = K(y —z),
versus coupling stiffness K. Results were ob-
tained performing one single run of 107 iter-
ations for each value of K.
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FIG. 3. Decimal logarithm of the mean
a square distance D between the orbits of
subsystems A and B versus time, for
F(t) = K(y—z) with K = 5 and for different

i b noise amplitudes W: W = 1072 (curve a),
W = 107* (curve b), and W = 10~° (curve
-6 c ¢). Results were averaged over 100 indepen-
dent realizations.
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unaffected by the perturbation, subsystem A becomes
less and less unstable. Note that for all positive values
of K the perturbation causes a decrease of the Lyapunov
exponent corresponding to subsystem A (called in the fol-
lowing L 4) with respect to the nonperturbed case, but
an inversion in its sign occurs only for a sufficiently large
perturbation weight. In fact, as K increases, L 4 becomes
negative first for K = 1.5 and then for K > K,. Compar-
ing Figs. 1 and 2 one observes that stability is a necessary
condition in order that synchronization can be attained.
Moreover, if L4 is negative and synchronization is at-
tained, the greater the absolute value of L4, the smaller
t, is. Stability, however, is not a sufficient condition ei-
ther: in the region around K = 4, where A = 0, in spite
of a negative L4, no synchronization is attained. Indeed,
a negative value of L4 signals that orbits of subsystem
A starting from different initial conditions coalesce into
the same final orbit. Usually, at least in the range of
values of K explored, this coincides with the orbit fol-
lowed by subsystem B and thus synchronization ensues,
but this is not always the case. In fact, in the above-
mentioned region the final orbits of the two subsystems
are different, though we observed that the perturbation
introduces a dependence of the final orbit of subsystem
A on the initial conditions of subsystem B.

Confronting the preceding results with those obtained
by Kapitaniak [8] for the same system, it appears evident
that synchronization is signaled in that paper at much
smaller values of K. Moreover, at difference with our
results (and also with those of Pyragas [6]), no thresh-
old effect seems to be expected since the estimated syn-
chronization time is roughly proportional to some inverse
power of K. The explanation for the discrepancies is
probably to be found in the criterion, much less demand-
ing than ours, adopted by Kapitaniak [8] to calculate the
synchronization time. In fact, the relatively large value
of € (10™*) chosen in Ref. [7] may not allow a correct esti-
mate of the synchronization time. Indeed it may happen
that the orbits stay relatively close for a large number
of iterations (thus temporarily satisfying a loose synchro-
nization criterion) and then separate again.

To investigate the effectiveness of the continuous con-
trol synchronization method in noisy situations, we
added a white noise to subsystem B and studied how
the mean square distance D between the orbits of the
two subsystems evolves with time for different noise am-
plitudes W and for a number of values of K (we report
in Fig. 3 the results corresponding to K = 5). It appears
evident that, for any given noise amplitude, D decreases
with respect to its initial value, but is always greater than
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A FIG. 4. Plot of t, (solid line) and

A (dots) versus coupling stiffness K, for
F(t) = K(y — ). Results were averaged over
100 independent runs of 10° iterations.
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FIG. 5. The two largest Lyapunov expo-
nents of system (4), with F(t) = K(y — ),
versus coupling stiffness K. Results were ob-
tained performing one single run of 107 iter-
ations for each value of K.
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a quantity of order 107! W. Thus the presence of noise
does not destroy the synchronizing effect of the feedback
control but limits the “degree” of synchronization at-
tainable. Indeed, the synchronization criterion hereby
adopted cannot be satisfied (unless 107! W < ¢€) and
consequently, the synchronization time tends to an infi-
nite value. A rather different conclusion was reached by
Kapitaniak [8]: according to his findings synchronization
is still possible in the presence of noise and t;, remains
essentially unaltered. However, this result, apparently in
contrast with our calculations, was made possible only by
his particular choice of parameters, the noise amplitude
being just one order of magnitude greater than the value
of € employed in the synchronization criterion.

As outlined before, in principle it is possible to use any
accessible state variable in order to implement the con-
tinuous feedback control method. ‘Referring to the model
system investigated in this Brief Report, we can choose as
output variable the oscillator velocity instead of its posi-
tion. This amounts to taking F'(t) = K(y—%). In Figs. 4
and 5 the corresponding synchronization time and the
two largest Lyapunov exponents of system (4) are shown
as a function of K. A comparison with Figs. 1 and 2
makes evident an overall much smoother dependence on
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the perturbation weight and, which is most relevant, a
synchronization threshold about one order of magnitude
smaller than in the first case. Thus the synchronization
efficiency may depend sensibly on the choice of the out-
put variable. This conclusion is confirmed by some pre-
liminary results concerning the Lorenz system [13]. As
a general rule, the optimal choice of the output variable
should realize a compromise between accessibility of the
variable and synchronization efficiency.

In conclusion, we presented an investigation of a
method for achieving synchronization of two chaotic sys-
tems, based on a continuous feedback control [6]. At
difference with a previous study [8], our results point out
that synchronization can be achieved only if the pertur-
bation weight is greater than a threshold value. More-
over, we showed that the presence of noise limits the “ac-
curacy” of synchronization, since the long-time distance
between the orbits of the two systems is roughly of the
order of the noise amplitude.
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